

# Chapter I

## Introduction to Computers

Computer is certainly the most versatile and ingenious developments of the modern technological age and today people use computers in almost every walk of life. Laptops is a common personal computers used in the work place and at home. It has emerged as an essential household equipment. Computer is a device made up of electronic and electromechanical component. The computer can receive, send, store, retrieve, analyse and synthesize the data according to a planned program. The basic function performed by a computer is execution of the program. The program in turn is a set of instructions by which the computer operates the data and performs certain tasks.

## Classification of Computers

Computers come in various sizes and perform numerous functions. The mode of processing the data differs. The portability of the computer has drastically changed. Computers can be classified according to the size/function, data processing mode and portability.

The classification according to the size / function is as follows

- (a) Micro computers
- (b) Mini computers
- (c) Mainframe computers and
- (d) Super computers

Computers can also be classified based on the data processing mode as:

- (a) Analog computers
- (b) Digital computers
- (c) Hybrid computers

Based on the portability, the computers can be classified as

- (a) Desktop computers and
- (b) Laptop computers

### 1. Classification based on the size / function

- (a) **Micro computers** – The microcomputer originated in the 1970s. It is built on an 8-bit microprocessor chip. The CPU has a microprocessor, a semiconductor, RAM for processing the data and ROM for storing the data. They are single user machines and can be processed by one person at a time. This computer had a word length of 8 bits. Currently 32-bit microprocessor have been developed. Most of the popular microcomputers are developed with Intel's chip.
- (b) **Mini computers** – This is a small general purpose computer with computing larger capacities than micro computers. Mini computers are small and expensive with limited input output capabilities. These machines can be handled simultaneously by multiple users and have more storage capacity. They have a word length of 16 bits or more. They are used for stand-alone operations or dedicated applications.

- (c) **Mainframe computers** – These computers are powerful than mini computers and have a word length of 32 bits, 48 bits or 64 bits. They can support more than 100 users in timesharing mode and can have a wide variety of languages and operating systems. They can be used in libraries and others places where networking is essential.
- (d) **Super computers** – This is characterised by a very large size and high processing speed. These computers are the most powerful ones and are very expensive. Super computers hold 64 bits of information. One super computer can perform the work of 40000 personal computers. Super computers are mainly used for weather forecasting, computational fluid dynamics, remote sensing, image processing, bio-medical applications and so on.

## 2. Classification based on the data processing mode

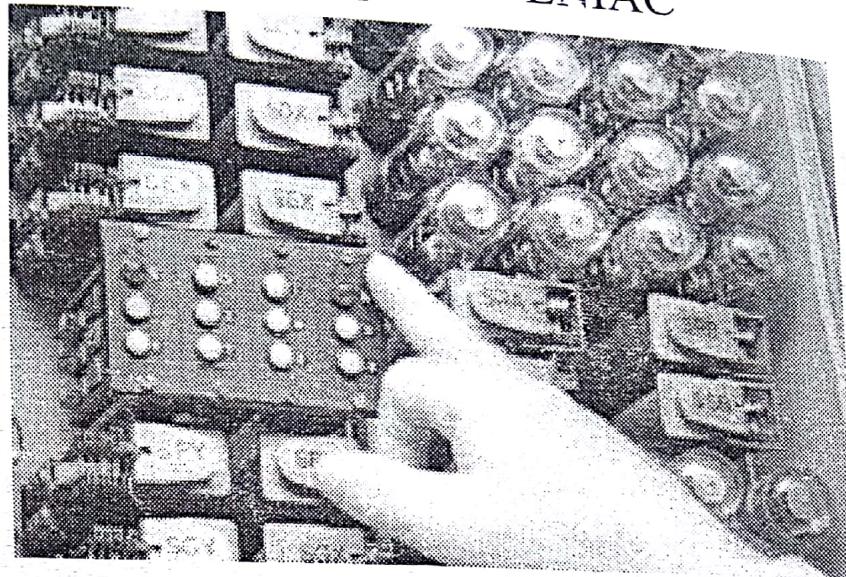
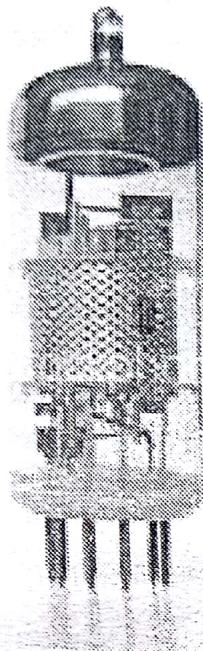
- (a) **Analog computers** – These computers work on continuous variables. Data obtained through measurement are called continuous data (Example – speedometer measures speed of an automobile). Analog systems are frequently used in places where temperature measurement is important.
- (b) **Digital computers** – Discrete data, which are obtained by counting, are used in digital computers and these systems perform arithmetic and logic functions. Digital computers may be further classified as (i) special purpose computers and (ii) general purpose computers. Special purpose computers perform only one specific task. It may not be versatile but performs the single task quickly and efficiently. A general purpose computer is one that can store different programs and can thus be used in countless applications.
- (c) **Hybrid computers** – This device uses desirable features of both analog and digital computers.

### 3. Classification based on portability

(a) **Desktop computers** – Personal computers sometimes are bigger in size and are placed on a table. These personal computers are called desktop computers because they can be placed on a table or desk.

(b) **Laptop computers** – Laptop computers (also known as notebook computers) are portable computers weighing around 2 kg. They use a keyboard, flat screen crystal display and a processor. They run with batteries and are thus designed to conserve energy. Many laptops can be connected to a network and may provide wireless connectivity. Miniature of laptop is palmtop, where the computer can be placed in the palm.

## Computer Generations



Computer generations provide a framework for the growth of the computer industry. It shows the major developments in the computer industry.

### First Generation (1942 – 1955)

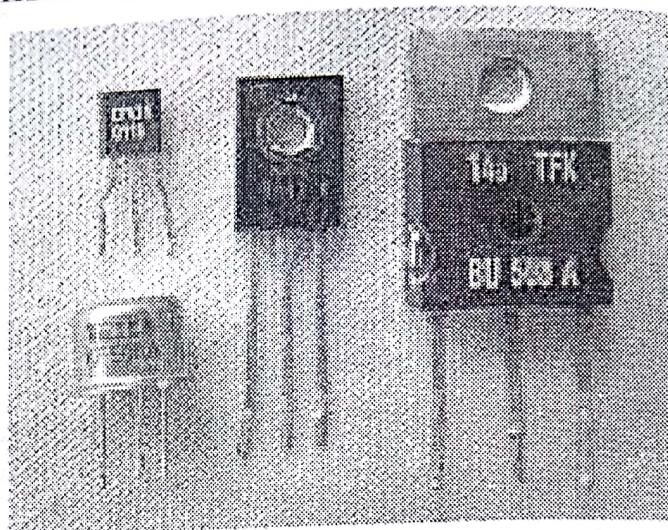
Vacuum tube computers like Electronic Numerical Integrator and Calculator (ENIAC), Electronic Delay Storage Automatic Calculator (EDSAC), Electronic Discrete Variable Automatic Computer (EDVAC) and Universal Automatic Computer (UNIVAC) are referred to as first generation computers. During this period, computer programming was mainly done in machine language. Assembly language was invented in the early fifties. Initial applications were in science and engineering. ENIAC took about 200 microseconds to add two digits and about 2800 microseconds to multiply.

**Limitations** – too bulky, unreliable, emits large amount of heat, air-conditioning required, frequent hardware failures and limited commercial use.

## Vacuum Tube, First Generation Computers - ENIAC



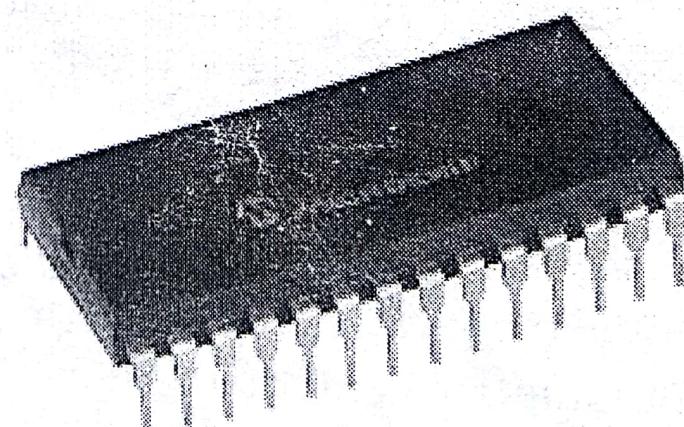
### Second Generation (1955 – 1964)


In 1947, transistors made of Germanium semiconductor material were used. This was more reliable than vacuum tube. The switching circuits were ten times faster, ten times more reliable, occupied one-tenth space and were ten times cheaper than vacuum tubes. This period witnessed the use of magnetic core for storage. High level languages like FORTRAN, COBOL, ALGOL, SNOBAL were developed in this generation.

**Limitations** – air-conditioning was essential, frequent maintenance was required and commercial production was difficult and costly.

### Third Generation (1964 – 1975)

Germanium transistors were replaced by silicon transistors. The third generation computers were based on Integrated circuits (IC's) with thousands of transistors and other electronic components on a silicon crystal known as 'chip'. High memory (100 megabytes) along with powerful CPU and large disc memories resulted in Time Shared Operating Systems. In this generation Fortran IV

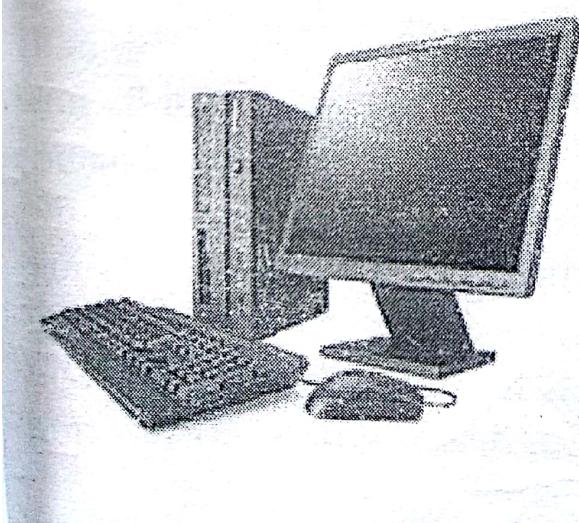

## Transistor, Second Generation Computer



and optimising FORTRAN compilers were developed as in the period. Important online systems like airline reservation, dynamic production control, interactive query and integrated data base management systems were some of the significant developments. This generation developed increased miniaturisation, high speed computation and proved to be more reliable.

**Limitations** – Air-conditioning was required in many cases as this highly sophisticated technology required the manufacture of IC chips.

## Integrated Circuits, Third Generation Computers




### Fourth Generation (1975 – 1995)

First Decade (1975 – 1985) - Large Scale Integrated Circuits (LSI's) and Very Large Scale Integrated Circuits (VLSI's) packed about 50,000 transistors in a single chip. Disc memories became very large (1000 Mbytes/drive). Memory capacity per chip has increased to 1K, 4K, 16K, 256K up to 1M bits. Computer cost was reduced and personal computers became common in offices and homes. Interactive graphic devices and language interfaces to graphic systems were developed and this paved way for computer-aided designs.

Second Decade (1986 – 1995) – The speed of microprocessors and the size of main memory and hard disk increased every year. In 1994, a single chip was packed with 9.3 million transistors and was driven by a 300 MHz clock and could carry out a billion operations per second. Apart from IBM, Apple computers, Motorola and Intel designed-powerful microprocessors. Laptops and palm held computers were developed in this decade. 1GB hard disc became common and networks became powerful. Language C and C++ was popular. Parallel processing computers were built during this period.

### Fourth Generation Computers



### Fifth Generation Computers



## Fifth Generation (1996 onwards)

The contemporary computers are characterised as fourth generation computers and the boundary between fourth generation and fifth generation is still not clear. The concept of artificial intelligence was developed. More powerful microprocessors and more storage space were added in a single chip. The computers have become very fast, reliable and inexpensive, but the basic logic structure is not changed. The basic block diagram of a CPU, memory and I/O devices remains unaltered.

## Computer Specifications

Computer is made of components like processor, RAM, hard drive and so on. The specification of a computer refers to the list of the nature of the components and its special features. The specifications of a computer varies with the end use like office use or as in engineering designs.

**Processor Speed** – Processing speed refers to the speed at which the computer runs. It is expressed as Hz (hertz), MHz (megahertz), GHz (gigahertz). The computer work fast if the processing speed is high. Higher the processing speed, the computer will be able to run two or more programs at the same time.

**RAM (Random Access Memory)** – This is one of the storage devices. It can also be defined as the memory or space available for the running of the programs. For example, the operator can listen to music as he/she works on the spread sheet and also browse the internet to check mail or run search engines. If the RAM is very low, the execution of the program will be slow or the application may stop responding to the commands. In other words, it hangs or freezes. The RAM now comes in the range of 1GB, 2GB, 4GB, as per the application requirements. CAD programs may require more RAM.

**Hard Disc Drive** – This is the main storage where all the data are stored. Data include, word files, drawing files, photos, etc.

movies. More number of files can be stored if the hard disc is big. The storage capacity is usually expressed in terms of bytes. Hard drives are inbuilt in the computers, but external hard drives are also available, which can be connected to the computer with the help of a USB port. Additional files can be stored in the external hard drives or it can serve as an additional copy. The capacity of the hard drive is usually over 100 GB and can go upto 1000 GB.

**Optical Disc Drive** – This helps to read or write CDs or DVDs. Reading refers to the ability of the computer to view or run the contents of the CD/VCD. Writing refers to the process of saving the datas from the computer to the CD/VCD. Writing is termed as 'burning'. CD/VCDs come in two formats, some are meant only read, whereas some are for read and write. Optical drives varies in its speed while reading or writing a CD/VCD. Some optical drives may write a CD in a minute, while the others may take 5 minute to write the same file.

**USB (Universal Serial Bus) Port** – The mouse, data cards, cellphones, cameras and external drives are connected to the computer through the USB port. The datas from the cameras, cellphones and external drives can be read/edited/saved when connected to the USB. Transfer of datas from computer to cell-phone and vice versa is also possible. The monitor can be projected on an larger screen (LCD projector/Television) through USB. Internet connections are now available as data cards which are connected to the computer through USB ports.

**Keyboard and Mouse** – Desktop computers have a separate keyboard and a mouse, while the laptop computers have built in keyboard and touch pad. The touchpad serves as a mouse. Mouse can be plugged in additionally, if needed. The keyboard of the desktop is connected to the CPU with a cable. Mouse comes with two buttons and a scroll in the centre. Optical mouse uses a camera to detect the movement and works faster. Recent developments in the keyboard and the mouse is the

wireless keyboard and wireless mouse which can be operated without a cable. Touch screen computers work without the keyboard and mouse.

**Network connections** – Networking with other computers and cellphones is possible through broad band connections and bluetooth connectivity. Broadband connections are routed through a modem/router. Recent development includes wireless connectivity and net connections through data cards. Bluetooth connections are also wireless connections which enables the computer to connect to the cellphones and help in transfer of data.

**Audio / Video** – Speakers are inbuilt in the computers. But for a higher level of sound, external microphones/speakers can be plugged into the computer. Headphones are also another mode of hearing music / movie. For video-conferencing, a web cam is used, which is also common in the laptops. For a desktop computer, a web cam can be purchased separately and installed in the computer.

**Graphics Cards** – The visual clarity of images depends on graphic cards. It is now integrated into the system. Recent developments include LCD / LED monitors. A dedicated graphics card is essential for higher picture quality and to run multimedia programs faster.

# Chapter II

## Organisation of Computer

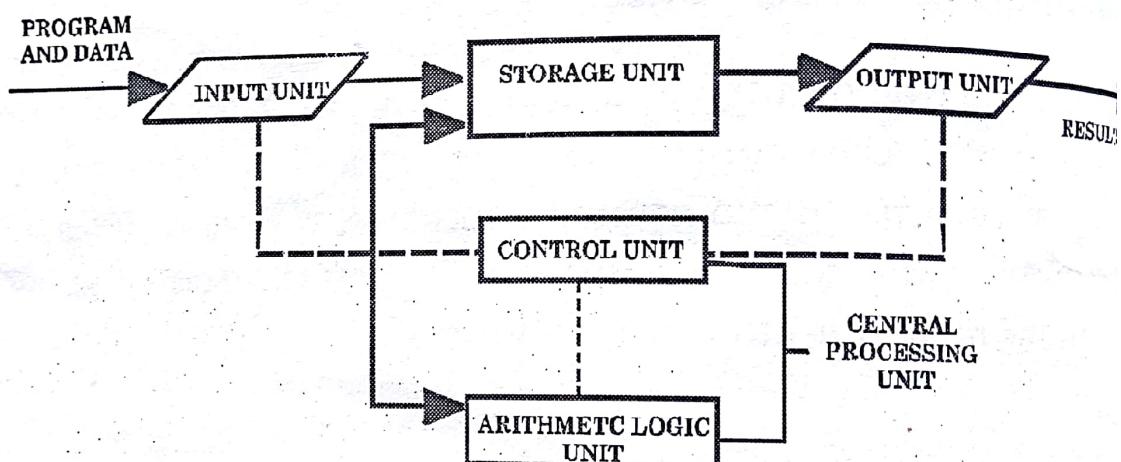
Computer maybe defined as a device that operates upon information or data. Data come in various shapes and sizes depending upon the type of computer application. A computer can store, process and retrieve data as and when desired. The basic operations in a computer is as follows

- Input of data
- Storing the data
- Processing of data
- Output of results
- Control of operations

JP<sup>0</sup>

**Input of Data** – The data can be entered into the computer in the form of numerical, alphabets, lines or shapes.

**Storing the Data** – Once the data is entered into the system, it is saved and stored in the system. The data can be retrieved whenever required


**Processing of Data** – The data is processed in many different ways. It can undergo mathematical calulations or logical functions.

**Output of results** – After processing the data, the final result is given as output. It may be in the printed format or via display.

**Controlling** – Every stage involves co-ordination of different operations. This sequence of operation is termed controlling.

The design and specifications of computers vary, however basic computer organisation remains the same. The flow chart for the computer organisation is given below.

### Organisation of Computer



The five basic operations performed by the computer are done by the following units namely – Input unit, Output Unit, Storage Unit, Arithmetic Unit, Control Unit and Central Processing Unit.

**Input Unit** – Instructions or details commonly termed as data is entered into the system before the operation. Data can be entered from a keyboard or any other input device. The data is then transformed into the binary codes. This transformation is done by units called input interfaces. The functions of the input unit may be summarised as follows:

1. It accepts the instructions and data from the outside
2. It converts the data into a computer acceptable format
3. It supplies the converted instructions and data to the computer system for further processing

**Output Unit** – The output unit has an interface which converts the machine coded output results from the processor into a human readable form. The output may be in printed form as a hard copy or visually displayed in the monitor. The functions of an output unit maybe summarised as follows

1. The output unit of the computer produces the results in the coded form, which cannot be understood by the viewer.
2. The coded results are converted by the interface into a human readable form.
3. Finally the decoded results are presented in a printed format or as a visual display.

**Storage Unit** – The storage or memory of the computer consists of devices that store the data both intermediate and final results as the program runs. It provides space for storing data and instructions, space for intermediate results and also space for final results. The functions of the storage unit maybe listed as follows

1. Data required for processing is received from the input units
2. Generates intermediate results
3. Releases final results to the output unit

**Arithmetic Logic Unit (ALU)** – This unit is the place where the actual execution of the instructions takes place. In simple terms, the computer performs addition, subtraction, division and multiplication as well as some logic operations like comparisons. The data and instructions stored in the primary storage prior to processing are transferred to the ALU, where the processing

takes place. No processing is done in the primary storage. Intermediate results generated in the ALU are temporarily transferred back to the storage unit. Data is retrieved from storage to the ALU for further processing. After completion of processing, the final results which are stored in the storage are sent to the output unit.

**Control Unit** – The control unit tells the arithmetic and logic unit which operations to perform and ensure that the necessary inputs are supplied. This also ensures that only the required results are sent to the output unit. This does not perform any processing function but manages and coordinates the work of the entire computer system. It obtains instructions from the program stored in main memory, interprets the instructions and issues signals that cause other units to execute them.

**Central Processing Unit (CPU)** – The CPU is the brain of the computer system as all the major functions / decisions are carried out in this unit. The control unit and the arithmetic logic unit of a computer system are jointly known as the Central Processing Unit.

## Types of Storage Devices

The Storage or memory can be grouped under the following heads

1. Internal Processor Memory – This consists of a small set of high speed registers which are internal to a processor memory and are used as temporary locations where the actual processing is done.
2. Primary Storage – It is a large memory that is fast but faster than the internal processor memory. This memory is accessed directly by the processor. It is based mainly on integrated circuits.

3. Secondary Storage – This is larger than primary storage but is slower than primary storage. It normally stores programs, other instructions and data files. Secondary storage can also be used as an overflow memory, in case where the capacity of the primary storage space. Secondary storage devices are not directly accessed by the processor. The information from the secondary storage is transferred to the primary storage device and then the information is accessed.
4. Cache memory – Another kind of storage is Cache memory. It is logically positioned between the internal memory (registers) and the main memory. It stores some of the contents of the main storage that is currently used by the processor.

## Primary Storage Devices

Primary or internal storage unit is basic to all computers. It is an essential component as it is needed for storing the programs that are executed by the CPU. The memory that communicates directly with the CPU is called as primary storage or main memory. The primary storage section consists of devices that store the information. There are two types of storage – Read only memory (ROM) and Random Access Memory (RAM).

Read Only Memory – This is a memory chip that one can read but cannot write on it. ROM provides permanent storage for program instructions. This is often used in micro-processors that always execute the same program such as BOOT STRAP LOADER. A ROM is prepared by the manufacturer and cannot be altered once the chip is made. The ROM memory can be classified under the following heads – PROM and EPROM.

Programmable Read Only Memory (PROM) – A variation of the ROM chip is PROM. It is possible for the user to 'customise' a system by converting the programs into micro programs and

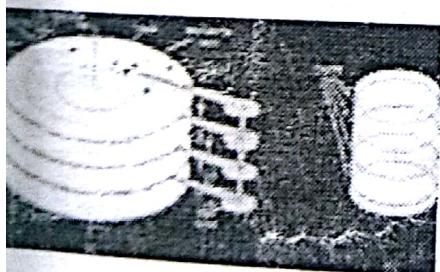
store them in the PROM chip. Once the operations are written, they become permanent and cannot be altered.

Erasable Programmable Read Only Memory (EPROM) – This type of ROM can be erased and programmed with the help of special equipment. Information stored in an EPROM chip is erased by exposing the chip to the ultra violet rays for some time.

Random Access Memory (RAM) – Primary storage is usually referred to as RAM because it is possible to randomly select and use any location of this memory to directly store and retrieve data and instructions. Each separate location inside the memory is easy to access as any other location and takes the same amount of time. The information can be read from a RAM chip and also written into it. Hence it is also called as read/write memory.

## Secondary Storage Devices

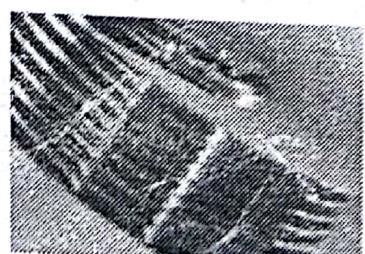
Storage capacity of the primary storage may not be sufficient to store large volumes of data; hence an additional memory called the auxiliary memory or secondary storage is used in most of the computer systems. This is also called as backup storage as it can be partially transferred to the primary storage and when required for processing. Data stored in the binary codes as in the primary storage. Commonly used secondary devices are


1. Magnetic Disk
2. Hard Disk
3. Floppy Disk
4. Winchester Disk
5. Magnetic Tape
6. Optical Disk Technology

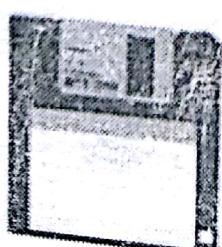
Magnetic Disk – This is a thin circular metal plate coated on both sides with a magnetic material. A conducting coil named 'Head' performs the job of reading and writing.

the magnetic surface. The head remains stationary while the disk rotates below it for reading and writing operation. The magnetic field causes magnetic patterns to be recorded on the magnetic surface. The capacities of the magnetic disk range from 1MB to thousands of MB. As far as the secondary memory is concerned, the magnetic disk stores the data in hard disk and floppy disk. The data is transferred from and to the disk in blocks.

Hard Disk – Hard disks are packs of rigid disks made up of light alloy and coated on both sides with a layer of magnetisable oxide. The disks rotate on a high speed (about 3600 rpm) on the drive. The hard disk is a permanent fixture containing one or more circular metallic disks that are used to store data files and software programs. Data is stored on the disk surfaces along the concentric tracks. Read / write heads do not come in contact with the disk surface but float above it with a gap of about 20 millions of an inch. Thus hard disks do not suffer from so much wear as floppy disks and are therefore suitable for long term usage.


Magnetic Disk




Hard Disk



Hard Disk Platter



Floppy Disk



CD-ROM



Floppy Disk – A floppy disk is made of flexible plastic which is coated with magnetic oxide. The flexible disk is enclosed within a square plastic jacket, often referred to as cartridge. The jacket gives handling protection to the disk surface. Floppy disks are typically 3, 5.25 or 8 inches in diameter. Floppy disks are cheap compared to the other storage device. They enhance online and offline storage medium for small system users.

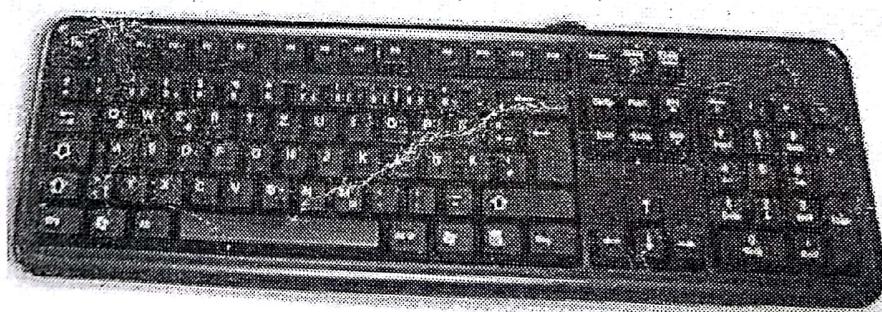
Winchester Disk – In this unit disks are permanently housed in sealed, contamination free containers. The disks are coated with a special lubricant which reduces the friction when read/write heads land on the surface. High-capacity systems using these sealed housings are said to employ Winchester technology. This disk is fast and reliable yet low priced. They are normally 5.25, 8 or 14 inches in diameter and storage capacities of 10, 20 and 40 megabytes are typical.

Magnetic Tape – Magnetic tape memories are similar to commonly used audio tape recorders. A magnetic tape cartridge consists of a spool on which a magnetic tape is wound. The tape is transported across a set of magnetic heads and is taken on another spool on another spool. Between the two spools a set of nine heads are mounted to write and read information on tape. Each head operates independently and stores information on the tape. This is a sequential access device and hence data recorded on tape cannot be addressed directly. If an information is at the end of the tape, all the earlier parts have to be read before accessing the required information.

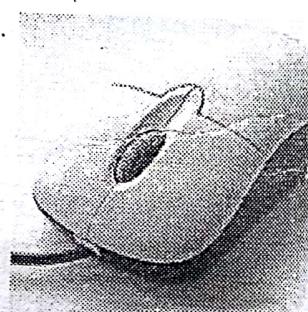
Optical Disk Technology (CD-ROM Disks): CD-ROM stands for compact Disk Read Only Memory. A CD is 5.25 inches in diameter and has a larger storage capacity. Mass replication of CD is inexpensive and fast. A CD-ROM disk is created using a laser beam, which alters the surface of the disk, creating small and bumpy areas called pits at the bottom of the disk. These areas represent data. CD is written over during the process.

manufacture by a high power laser beam and the information is retrieved using low power laser.

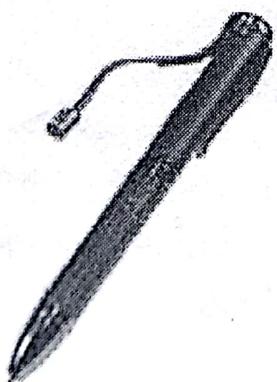
## Input Devices


Input devices feed the necessary data into the computer. The data has to be converted to a form which can be read by an input unit of the computer. This form is known as machine readable form. The data in machine readable form is read by the input unit, transformed to appropriate internal code and stored in the computer memory. The processed data stored in the memory is sent to an output unit when commanded by a program. The input devices may be listed as follows.

- I. Keyboard
- II. Pointing Devices
  - 1. Mouse
  - 2. Light Pen
  - 3. Joystick
- III. Scanners
  - 1. Optical Scanners
    - a. Optical Mark Readers
    - b. Optical Character Readers
    - c. Bar Code Readers
  - 2. Magnetic Ink Character Recognition
- IV. Voice / Speech Recognition Devices
- V. Smart Cards
- VI. Digitiser


As mentioned earlier, the input devices take data and programs and put them in the form of programs and put them into the form the computer can process. The most common input devices are keyboard, mouse, punched cards, magnetic-tape readers etc.

**I. Keyboard** – The keyboard is the most common and important device. It allows you to communicate with the computer. It consists of four main areas – the function keys, the typewriter keys, the numeric keypad and the special-purpose keys. Standard keys consist of letters, numbers and special characters such as semicolon and the commas. The output of the key switches are fed to electronic circuit known as keyboards encoder which converts them into binary-coded values. The values are then fed into the computer which interprets the key which are pressed. Thus the function of the keys change with the type of work we are doing. Function keys are used to issue commands. Function keys are also programmable keys. This also has special purpose keys such as Ctrl (Control), Del (Delete), INS (Insert), Alt (Alternate). Cursor movement keys have directional arrows. Numerical keys are used to enter numbers for mathematical manipulation.


Keyboard



Mouse



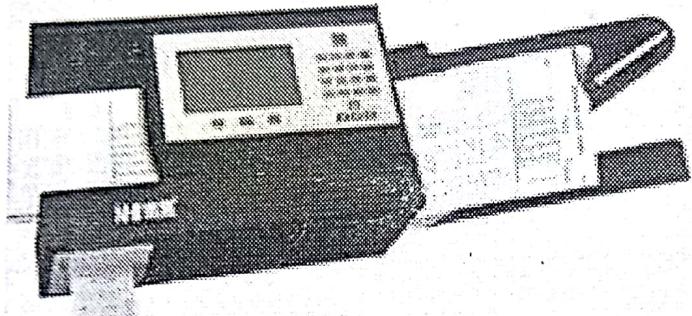
Light Pen



Joysticks



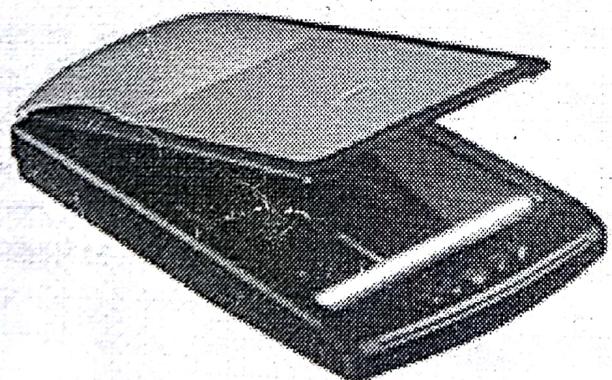
**II. Pointing Devices** – These devices are displayed as pointers on the monitor. The pointer moves as per the direction of the device. Few examples of the pointing devices are mouse, light pen and joystick.


1. **Mouse** – This is used in addition to the keyboard. It is a hand-held device that controls a pointer on the screen. When the mouse is moved, the ball on the base of the mouse moves. This is translated into signals that tells the computer how to move the screen pointer. Mouse is more useful for creating graphical designs. It can be used like a pen and thereby can be used to draw patterns and figures. The mouse cannot do all the functions; it requires the keyboard for certain functions (like typing words).
2. **Light Pen** – A person can point and draw a line or curve on the screen. It may be noted that the light pen does not emit light. The light sensitive dioxide at the tip of the pen would sense the light. The light pen is also useful for graphics work. For example, a CAD designer can draw designs directly on the screen with the pen.
3. **Joystick** – With the joystick, the movements are determined by the manner in which the user pushes a single vertical stick. It is commonly used in playing video games

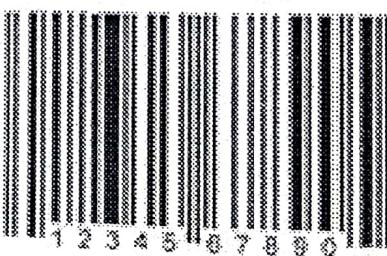
**III. Scanners** – They are used for direct data entry into the computer system. The two major types of scanners are – Optical scanners and Magnetic Ink character recognition devices.


1. **Optical Scanners** – These devices recognises marks/characters involves a light source and light sensors. The common optical scanner devices are optical mark readers (OMR), optical character readers (OCR) and bar-code readers.
  - a. **Optical Mark Readers** are scanners capable of recognising a pre-specified type of mark made by pen or pencil. The application forms are filled by darkening a square or cir-

cular space by a pencil. These sheets are directly fed to the computer and OMR reads the data and records the same. The recognition of marks involves focussing a light beam on the page being scanned and detecting the reflected light pattern from the marks. Pencil marks made with soft lead pencil will reflect the light.


Optical Mark Reader




Optical Mark Sheet



Optical Character Reader



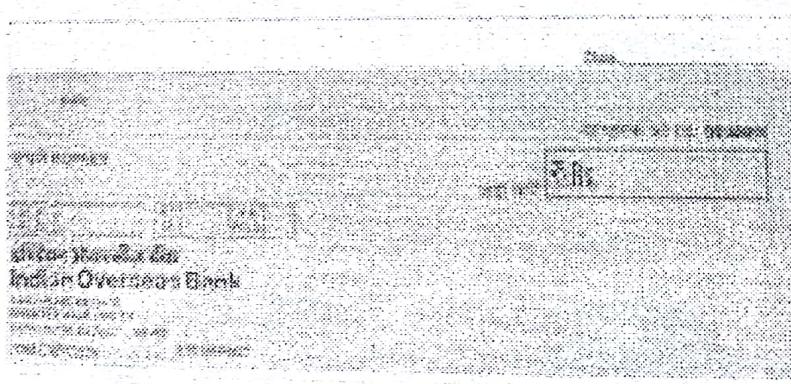
Bar Code



Bar Code Reader



b. Optical Character Readers are capable of detecting alphabetic and numeric characters printed on paper. The characters may be handwritten or typed or a printed document or a picture form. OCR devices examine each character for minute spots. Once the whole character is scanned, it is compared with the characters (standard fonts) the machine


has been programmed to recognise. If the pattern matches or nearly matches, it is considered to be character read. If the scanned character does not match satisfactorily with any of the fonts, it is rejected.

c. Bar-code Readers – Data coded in the form of light and dark lines or bars are known as bar codes. Bar-codes are used particularly by the retail trade for labelling shelves and in stock control. They are also used for numbering books in libraries. The date of borrowing and returning of the book is entered into the system by scanning the barcodes in the books with a laser beam. The laser beam strikes across the pattern of bits and records them as input data.

MICR

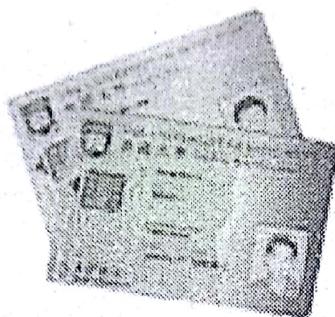


Magnetic Ink Character



2. Magnetic-ink Character Recognition (MICR) – This system uses a special ink to print characters. These characters can be decoded by special magnetic devices. This system is widely used by banks for processing cheques. Cheque numbers are printed with ink containing magnetic particles of iron oxide. There is a special font used to represent the characters. In this font each character is basically composed

of vertical bars. The characters are printed in a special that contains a magnetic material. This method is primarily used in the banking industry and most cheques are processed under the MICR.


#### IV. Voice / Speech Recognition and Response devices

voice recognition system consists of a microphone, telephone that converts the human speech into electrical signals. A signal pattern obtained in this manner is transmitted to the computer where it is matched against pre-stored patterns. When a close match is found, a word is recognised by the vocabulary of the system. To build up this vocabulary, the system has been trained to recognise the words and phrases that are to be present in vocabulary. Hence the system is initially operated in 'training mode' when the user speaks the words several times to train the system to recognise his/her patterns. Just as the voice recognition system allows the user to talk to computer, similarly, a voice response enables computer to talk to the user. Audio response is an output media that produces verbal responses from the computer system. In a voice response system, all the sounds needed to process the possible enquiries are pre-recorded on a storage medium. Each sound is given a code. When enquiries are received, the computer follows a set of rules to create a reply message in a coded form. This coded message is then transmitted to an audio-response device which assembles the sounds in a proper sequence and transmits the audio message back to the station requesting the information. This is widely used in the banks, in the elevators, by insurance companies, in television and by telephone companies. "Touch and Go" toys also use this mechanism in teaching basic vocabulary in English.

Voice Recognition Device



Smart Card



Smart Card Reader



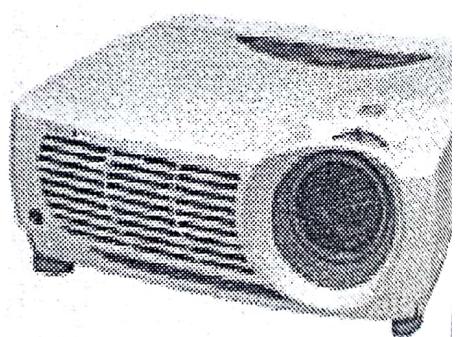
**V. Smart Cards** – Smart cards are used as credit cards for making transactions. To use it the cardholder inserts the card into a special terminal and enters the password on the keyboard. The card has microchips that can keep a permanent record which are updated each time the card is used. This is commonly termed as 'ATM' cards or 'credit' cards. Smart cards also is used for identity cards.

**V. Digitiser** – This is used for making maps and inputting the manual patterns. Digitiser also called as digitising tablet come in different sizes and working surfaces. The surface is covered with a grid of many tiny wires which are connected to the computer. Drawings placed over the grid can be traced and entered into the computer by the usage of a special pen or mouse-like device which identifies the x, y co-ordinates. As it progresses the drawing is displayed on the screen; it can be stored on the system or printed on a paper.

## Output Devices

The output unit transforms the internal representation of data into a form which can be read by people. These are also known as peripherals devices as they surround the CPU. Output units are instruments of interpretation and communication between the humans and the computers. These devices take machine-coded results from the processor and convert them into the form that can

be used by people. The most common output devices are the monitor and the printers. The output devices can be listed as follows.


- I. Monitor
- II. Projection Displays
- III. Printers
  1. Character Printer
    - a. Letter Quality Printer
    - b. Dot-matrix Printer
    - c. Ink-jet Printer
  2. Line Printer
    - a. Drum Printer
    - b. Chain Printer
  3. Page Printer
- IV. Plotters
- V. Speech / Voice Output Unit
- VI. Microfilm and Microfiche

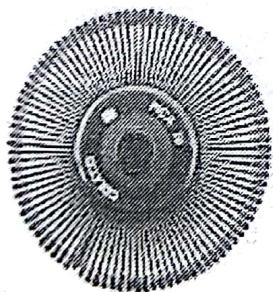
- I. Monitor – The monitor is the computer screen and resembles a television screen. The monitor displays instructions sent to the computer. The information and the data processed can also be viewed in the monitor. The monitor can be a monochrome or a colour screen display. A monochrome uses only white, green or black to display

Monitor

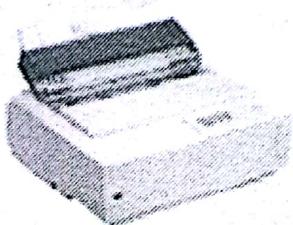


Projection Display

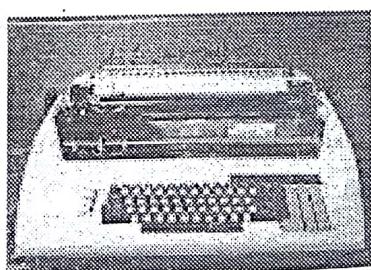



text on a contrasting background. Colour screen display a minimum of 256 colours of over a 4 Trillion colours.

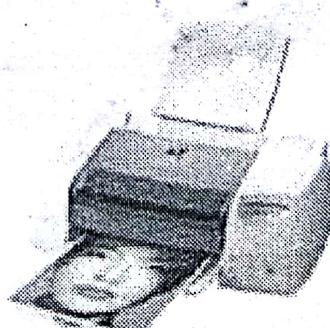
II. **Projection Displays** – The output of the CPU is projected on a large screen using projectors termed as LCD/LED projector. Thanks to the projector, the image is enlarged and projected on a large screen. These are popularly used for seminars, classrooms and marketing presentations.


III. **Printers** – Printers are the primary output devices used to prepare permanent documents. The printer generates a permanent hard copy of the files on paper. The printer can be classified as follows – Character Printer, Line Printer and Page Printer

1. **Character printer** – Character printer print only one character at a time. Commonly used character printer are – letter quality printer, dot-matrix printer and ink-jet printer.
  - a. **Letter quality printer** popularly known as daisy wheel printer is a low speed printer and is used when high quality is demanded. This is an impact printer where the hammer strikes on the ribbon to produce character. This printer is fitted with unchangeable print heads called daisy


Daisy Wheel




Dot-matrix Printer



Daisy Wheel Printer



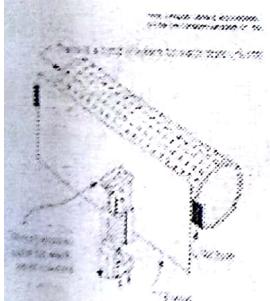
Ink jet Printer



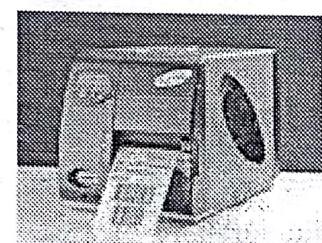
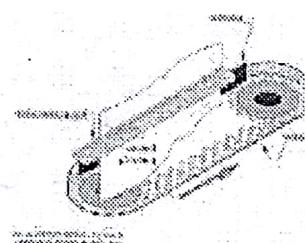
wheels. To print each character, the wheel is rotated, the appropriate spike strikes against an inked ribbon.

b. Dot-matrix printer is also a slow speed impact printer. This printer prints character as pattern of dots. The printer head consists of tiny needles, typically seven rows with nine characters each. The print produced a small 'Print head' which moves to and fro across the page, stopping momentarily in each character position to strike a print ribbon against the paper. Multiple copies maybe produced by the usage of a carbon paper. The print quality is inferior to the daisy wheel, but the advantage of changing the font style and size which is not possible with daisy wheel.

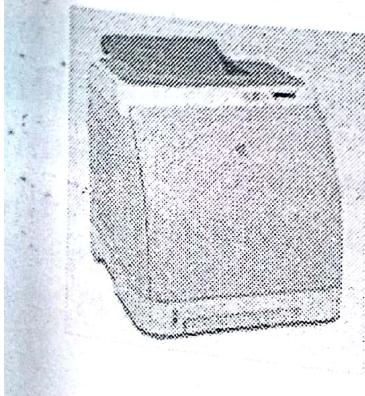
c. Ink-jet printer – This is a low speed non-impact printer. They print characters by spraying small drops of ink onto paper. Special type of ink having high content is used. Droplets of ink are electrically charged after leaving a nozzle. The droplets are then guided to the print position on the paper by electrically charged deflection plates. Ink-jet printer produce high quality output because the characters are formed by dozens of tiny dots. Ink-jet printer also produce colour print outs.


2. Line Printers – They are high speed printers having speed of 300 to 2500 lines per minute. Their print speed is such that to an observer they appear to be printing a line at a time and hence the name 'line printer'. Drum printer and chain printer are commonly used printers.

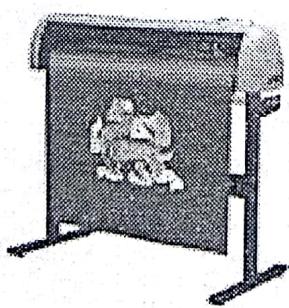
a. Drum printer consists of a cylindrical drum with characters embossed on its surface. On complete set of characters is embossed for each and every possible position on a line. Thus a printer with 132 characters per line and a 96 character set will have on its surface



$x 96 = 12672$  characters embossed. The printer drum is rotated at a high speed. A character is printed by striking a hammer against the embossed character on its surface. Printer drums are expensive and cannot be changed often. Printer drums have a fixed font type and size.

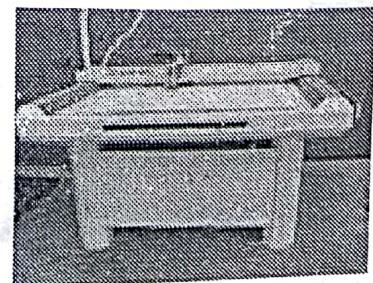
b. Chain printer has a steel band on which character sets are embossed. The band is rotated at high speed. As the band rotates, a hammer is activated. When a desired character as specified in the buffer register comes in front of it. For a printer with 132 characters per line, 132 hammers will be positioned to strike the carbon ribbon which is placed between the chain, paper and the hammer. The hammer movement and the chain movement should be accurately synchronised. Bad synchronisation leads to blurred lines. The main advantage of chain or band printer is the ease with which chains can be changed. Thus different fonts and different scripts maybe used with the same printer.


Drum Printer




Chain Printer




Laser Printer

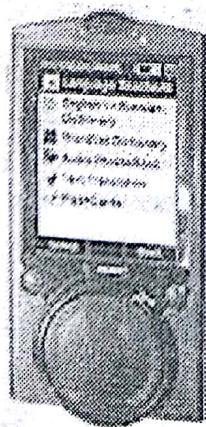


Drum Plotter

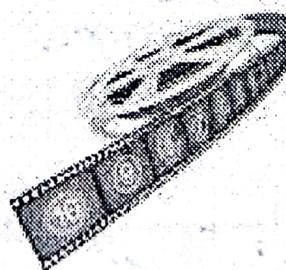


Flat bed Plotter




3. Page Printer – This printer prints an image of a whole page at a time. The image may consist of conventional printed diagrams, pictures or combination of these. According to the technical features, these printers are also known as optical printer, laser printer or xerographic printer. An electronically controlled laser beam marks out an electrostatic image on the rotating surface of a photoconductive drum. Ink toner is attracted onto the electrostatic pattern on the surface of the drum. The toner is then transferred onto the paper as it comes into contact with the drum. A typically high-speed laser printer would print 146 pages per minute and the quality of the output is very high indeed.

IV. Plotters – Plotter is a specialised output device designed to produce high-quality graphics in a variety of colours. It is also termed as large scale printer. There are two types of plotters – drum plotter and flat bed plotter. In a drum plotter, the paper on which the graph is drawn is mounted on a rotating drum. A pen which can move linearly, i.e. is perpendicular to the direction of drum rotation, is mounted on a carriage. The drum can rotate in clockwise or anti-clockwise direction under the control of plotting instructions sent by the computer. The pen can move left or right or right to left. The pen can also move up and down. The movement of the pen and the drum is controlled by the graph plotting program. The programs can thus draw various graphs and also annotate them by using the pen to draw characters. A flat bed plotter has a stationary plotting surface on which a paper is fixed. The pen is mounted on the carriage which can move in either X or Y direction. The pen can also be moved up and down. A graph plotting computer program is used to move the pen to trace the desired graph.


V. Speech / Voice output unit – A speech output unit is one which reads strings of characters stored in a computer's memory and converts them into a spoken sentence. These speech units for English have been greatly refined and a near natural speech emerges. They are used to give voice commands to operators of plants based on results of computations. They are used as parts of a machine which can read out printed matter to blind persons. This enables the blind persons to read books as soon as they are printed rather than wait for the book to appear in Braille.

VI. Microfilm and Microfiche – The output from the computer is displayed on a high resolution cathode ray tube. This is photographed on a 35mm film. A camera is controlled to film successive output pages on the screen of the cathode ray tube. A special microfilm reader is used to read the output. Some microfilm readers also produce a hard copy using Xerographic process. In some systems, the microfilm is converted to a 'microfiche' form. A microfiche is a 4" x 6" sheet of film that holds 98 frames of 8" x 11" page images reduced to 24 times. It is easier to read a microfiche with a microfiche reader than to read with a microfilm. Besides this, microfiche is easier to mail between locations and hence it is popular.

Voice output



Microfilm

